Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38559015

RESUMO

Population studies are crucial in understanding the complex interplay between the gut microbiome and geographical, lifestyle, genetic, and environmental factors. However, populations from low- and middle-income countries, which represent ~84% of the world population, have been excluded from large-scale gut microbiome research. Here, we present the AWI-Gen 2 Microbiome Project, a cross-sectional gut microbiome study sampling 1,803 women from Burkina Faso, Ghana, Kenya, and South Africa. By intensively engaging with communities that range from rural and horticultural to urban informal settlements and post-industrial, we capture population diversity that represents a far greater breadth of the world's population. Using shotgun metagenomic sequencing, we find that study site explains substantially more microbial variation than disease status. We identify taxa with strong geographic and lifestyle associations, including loss of Treponema and Cryptobacteroides species and gain of Bifidobacterium species in urban populations. We uncover a wealth of prokaryotic and viral novelty, including 1,005 new bacterial metagenome-assembled genomes, and identify phylogeography signatures in Treponema succinifaciens. Finally, we find a microbiome signature of HIV infection that is defined by several taxa not previously associated with HIV, including Dysosmobacter welbionis and Enterocloster sp. This study represents the largest population-representative survey of gut metagenomes of African individuals to date, and paired with extensive clinical biomarkers, demographic data, and lifestyle information, provides extensive opportunity for microbiome-related discovery and research.

2.
Nat Biotechnol ; 42(2): 328-338, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37106038

RESUMO

To gain insight into the accuracy of microbial measurements, it is important to evaluate sources of bias related to sample condition, preservative method and bioinformatic analyses. There is increasing evidence that measurement of the total count and concentration of microbes in the gut, or 'absolute abundance', provides a richer source of information than relative abundance and can correct some conclusions drawn from relative abundance data. However, little is known about how preservative choice can affect these measurements. In this study, we investigated how two common preservatives and short-term storage conditions impact relative and absolute microbial measurements. OMNIgene GUT OMR-200 yields lower metagenomic taxonomic variation between different storage temperatures, whereas Zymo DNA/RNA Shield yields lower metatranscriptomic taxonomic variation. Absolute abundance quantification reveals two different causes of variable Bacteroidetes:Firmicutes ratios across preservatives. Based on these results, we recommend OMNIgene GUT OMR-200 preservative for field studies and Zymo DNA/RNA Shield for metatranscriptomics studies, and we strongly encourage absolute quantification for microbial measurements.


Assuntos
Microbiota , Fezes , RNA Ribossômico 16S/genética , Microbiota/genética , Metagenoma , DNA
3.
Nat Commun ; 13(1): 926, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35194028

RESUMO

Human gut microbiome research focuses on populations living in high-income countries and to a lesser extent, non-urban agriculturalist and hunter-gatherer societies. The scarcity of research between these extremes limits our understanding of how the gut microbiota relates to health and disease in the majority of the world's population. Here, we evaluate gut microbiome composition in transitioning South African populations using short- and long-read sequencing. We analyze stool from adult females living in rural Bushbuckridge (n = 118) or urban Soweto (n = 51) and find that these microbiomes are taxonomically intermediate between those of individuals living in high-income countries and traditional communities. We demonstrate that reference collections are incomplete for characterizing microbiomes of individuals living outside high-income countries, yielding artificially low beta diversity measurements, and generate complete genomes of undescribed taxa, including Treponema, Lentisphaerae, and Succinatimonas. Our results suggest that the gut microbiome of South Africans does not conform to a simple "western-nonwestern" axis and contains undescribed microbial diversity.


Assuntos
Microbioma Gastrointestinal , Microbiota , Adulto , Feminino , Microbioma Gastrointestinal/genética , Humanos , Metagenômica , População Rural , África do Sul
4.
Cancer Discov ; 11(7): 1736-1753, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33707235

RESUMO

In lung adenocarcinoma, oncogenic EGFR mutations co-occur with many tumor suppressor gene alterations; however, the extent to which these contribute to tumor growth and response to therapy in vivo remains largely unknown. By quantifying the effects of inactivating 10 putative tumor suppressor genes in a mouse model of EGFR-driven Trp53-deficient lung adenocarcinoma, we found that Apc, Rb1, or Rbm10 inactivation strongly promoted tumor growth. Unexpectedly, inactivation of Lkb1 or Setd2-the strongest drivers of growth in a KRAS-driven model-reduced EGFR-driven tumor growth. These results are consistent with mutational frequencies in human EGFR- and KRAS-driven lung adenocarcinomas. Furthermore, KEAP1 inactivation reduced the sensitivity of EGFR-driven tumors to the EGFR inhibitor osimertinib, and mutations in genes in the KEAP1 pathway were associated with decreased time on tyrosine kinase inhibitor treatment in patients. Our study highlights how the impact of genetic alterations differs across oncogenic contexts and that the fitness landscape shifts upon treatment. SIGNIFICANCE: By modeling complex genotypes in vivo, this study reveals key tumor suppressors that constrain the growth of EGFR-mutant tumors. Furthermore, we uncovered that KEAP1 inactivation reduces the sensitivity of these tumors to tyrosine kinase inhibitors. Thus, our approach identifies genotypes of biological and therapeutic importance in this disease.This article is highlighted in the In This Issue feature, p. 1601.


Assuntos
Acrilamidas/uso terapêutico , Adenocarcinoma de Pulmão/tratamento farmacológico , Compostos de Anilina/uso terapêutico , Antineoplásicos/uso terapêutico , Receptores ErbB/genética , Neoplasias Pulmonares/tratamento farmacológico , Acrilamidas/farmacologia , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Compostos de Anilina/farmacologia , Animais , Antineoplásicos/farmacologia , Modelos Animais de Doenças , Feminino , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Masculino , Camundongos
5.
Nat Protoc ; 16(1): 458-471, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33277629

RESUMO

Short-read metagenomic sequencing and de novo genome assembly of the human gut microbiome can yield draft bacterial genomes without isolation and culture. However, bacterial genomes assembled from short-read sequencing are often fragmented. Furthermore, these metagenome-assembled genomes often exclude repeated genomic elements, such as mobile genetic elements, compromising our understanding of the contribution of these elements to important bacterial phenotypes. Although long-read sequencing has been applied successfully to the assembly of contiguous bacterial isolate genomes, extraction of DNA of sufficient molecular weight, purity and quantity for metagenomic sequencing from stool samples can be challenging. Here, we present a protocol for the extraction of microgram quantities of high-molecular-weight DNA from human stool samples that are suitable for downstream long-read sequencing applications. We also present Lathe ( www.github.com/bhattlab/lathe ), a computational workflow for long-read basecalling, assembly, consensus refinement with long reads or Illumina short reads and genome circularization. Altogether, this protocol can yield high-quality contiguous or circular bacterial genomes from a complex human gut sample in approximately 10 d, with 2 d of hands-on bench and computational effort.


Assuntos
Microbioma Gastrointestinal , Microbiota , Sequenciamento por Nanoporos/métodos , Análise de Sequência de DNA/métodos , DNA/genética , DNA/isolamento & purificação , Fezes/microbiologia , Humanos , Metagenoma
6.
Nat Biotechnol ; 38(6): 701-707, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32042169

RESUMO

Microbial genomes can be assembled from short-read sequencing data, but the assembly contiguity of these metagenome-assembled genomes is constrained by repeat elements. Correct assignment of genomic positions of repeats is crucial for understanding the effect of genome structure on genome function. We applied nanopore sequencing and our workflow, named Lathe, which incorporates long-read assembly and short-read error correction, to assemble closed bacterial genomes from complex microbiomes. We validated our approach with a synthetic mixture of 12 bacterial species. Seven genomes were completely assembled into single contigs and three genomes were assembled into four or fewer contigs. Next, we used our methods to analyze metagenomics data from 13 human stool samples. We assembled 20 circular genomes, including genomes of Prevotella copri and a candidate Cibiobacter sp. Despite the decreased nucleotide accuracy compared with alternative sequencing and assembly approaches, our methods improved assembly contiguity, allowing for investigation of the role of repeat elements in microbial function and adaptation.


Assuntos
Microbioma Gastrointestinal/genética , Genoma Bacteriano/genética , Metagenômica/métodos , Sequenciamento por Nanoporos/métodos , Análise de Sequência de DNA/métodos , Adulto , Animais , DNA Bacteriano/análise , DNA Bacteriano/genética , Cães , Fezes/microbiologia , Humanos , Camundongos
7.
BMC Res Notes ; 11(1): 861, 2018 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-30518404

RESUMO

OBJECTIVE: The purpose of this project was to use an in vivo method to discover riboswitches that are activated by new ligands. We employed phage-assisted continuous evolution (PACE) to evolve new riboswitches in vivo. We started with one translational riboswitch and one transcriptional riboswitch, both of which were activated by theophylline. We used xanthine as the new target ligand during positive selection followed by negative selection using theophylline. The goal was to generate very large M13 phage populations that contained unknown mutations, some of which would result in new aptamer specificity. We discovered side products of three new theophylline translational riboswitches with different levels of protein production. RESULTS: We used next generation sequencing to identify M13 phage that carried riboswitch mutations. We cloned and characterized the most abundant riboswitch mutants and discovered three variants that produce different levels of translational output while retaining their theophylline specificity. Although we were unable to demonstrate evolution of new riboswitch ligand specificity using PACE, we recommend careful design of recombinant M13 phage to avoid evolution of "cheaters" that short circuit the intended selection pressure.


Assuntos
Bacteriófago M13/metabolismo , Evolução Molecular Direcionada , Biossíntese de Proteínas , Riboswitch , Teofilina/metabolismo , Sequência de Bases , Conformação de Ácido Nucleico , Riboswitch/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...